Class #8 Practice

- 1. Match each coordinate rule to a description of its resulting transformation.
 - A. $(x, y) \rightarrow (x + 3, y)$
 - **B.** $(x, y) \rightarrow (2x, 2y)$
 - **C.** $(x, y) \rightarrow (x, y + 4)$
 - **D.** $(x, y) \rightarrow (x, y 4)$
 - **E.** $(x, y) \rightarrow (x 3, y + 4)$

- 1. Translate by the directed line segment from (0, 0) to (0, 4).
- 2. Translate by the directed line segment from (0, 0) to (3, 0).
- 3. Dilate using the origin as the center and a scale factor of 2.
- 4. Translate by the directed line segment from (0, 0) to (0, -4).
- 5. Translate by the directed line segment from (0, 0) to (-3, 4).
- 2. Respond to each question
 - a. Draw the image of triangle ABC under the transformation $(x, y) \rightarrow (x - 4, y + 1)$. Label the result *T*.
 - b. Draw the image of triangle ABC under the transformation $(x, y) \rightarrow (-x, y)$. Label the result *R*.

- **3.** Here are some transformation rules. For each rule, describe whether the transformation is a rigid motion, a dilation, or neither.
 - a. $(x, y) \to (x 2, y 3)$
 - **b.** $(x, y) \to (2x, 3y)$
 - **c.** $(x, y) \to (3x, 3y)$
 - **d.** $(x, y) \to (2 x, y)$
- **5.** Reflect triangle *ABC* over the line y = 2.

Translate the image by the directed line segment from (0, 0) to (3, 2). What are the coordinates of the vertices in the final image? (Lesson 6-1)

[DATE	PERIOD

Practice

Distances and Circles

- 1. Match each equation to its description.
 - **A.** circle centered at (0, -4) with a radius of 3 **1.** $(x - 1)^2 + y^2 = 9$
 - **B.** circle centered at (1, -4) with a radius of $\sqrt{3}$ **2.** $x^2 + (y + 4)^2 = 9$
 - **C.** circle centered at (1, 4) with a radius of $\sqrt{3}$ **3.** $(x 1)^2 + (y 4)^2 = 3$
 - **D.** circle centered at (1, 0) with a radius of 3 **4.** $(x 1)^2 + (y + 4)^2 = 9$
 - E. circle centered at (1, -4) with a radius of 3

5. $(x-1)^2 + (y+4)^2 = 3$

2. Write an equation of a circle that is centered at (-3, 2) with a radius of 5.

(A)
$$(x - 3)^2 + (y + 2)^2 = 5$$

(B) $(x + 3)^2 + (y - 2)^2 = 5$

(c)
$$(x-3)^2 + (y+2)^2 = 25$$

D. $(x + 3)^2 + (y - 2)^2 = 25$

6. Match each coordinate rule to a description of its resulting transformation. (Lesson 6-2)

A. $(x, y) \rightarrow (3x, 3y)$	 Translate along the directed line segment from (0, 0) to (-3, 0).
B. $(x, y) \rightarrow (x - 3, y - 3)$	2. Translate along the directed line segment from (0, 0) to (0, -3).
C. $(x, y) \rightarrow (x + 3, y + 3)$	3. Translate along the directed line segment from (0, 0) to (3, 0).
D. $(x, y) \rightarrow (x - 3, y)$	4. Translate along the directed line segment from (0, 0) to (0, 3).
E. $(x, y) \rightarrow (x + 3, y)$	5. Translate along the directed line segment from (0, 0) to (3, 3).
F. $(x, y) \to (x, y - 3)$	 Translate along the directed line segment from (0, 0) to (-3, -3).
G. $(x, y) \to (x, y + 3)$	7. Dilate using the origin as the center and a scale factor of 3.

Practice Equations of Lines

1. Select all the equations that represent the graph shown.

1. Select **all** equations that are parallel to the line 2x + 5y = 8.

1)

(A)
$$y = \frac{2}{5} x + 4$$

(B) $y = -\frac{2}{5} x + 4$
(C) $y - 2 = -\frac{5}{2} (x + 1)$
(D) $y - 2 = -\frac{2}{5} (x + 1)$
(E) $10x + 5y = 40$

1. Write an equation for a line that passes through the origin and is perpendicular to y = 5x - 2.

 For each equation, is the graph of the equation parallel to the line shown, perpendicular to the line shown, or neither?

a.
$$y = 0.2x$$

b.
$$y = -2x + 1$$

c.
$$y = 5x - 3$$

d.
$$(y-3) = -5(x-4)$$

e.
$$(y - 1) = 2(x - 3)$$

f.
$$5x + y = 3$$

- **2.** Select **all** equations whose graphs are lines perpendicular to the graph of 3x + 2y = 6 (Lesson 6-11)
 - (A) 3x 2y = 4(B) 2x + 3y = 6(C) 2x - 3y = 8(D) $(y - 4) = \frac{2}{3}(x - 6)$ (E) $(y - 2) = -\frac{3}{2}(x - 8)$ (F) $y = \frac{2}{3}x$ (G) $y = \frac{3}{2}x + 3$